Bienvenidos!!!


Te damos la bienvenida al maravilloso mundo de la biología.

Suerte y que encuentres lo que necesites.


lunes, 23 de marzo de 2009

Tipos de RNA

Existen principalmente 3 tipos de RNA (ARN, ácido ribonucleico), cada uno de ellos sintetizados a partir de secuencias de DNA concretas, y con una función específica:


  • mRNA: RNA mensajero, es el encargado de transmitir la información genética desde el DNA hasta los ribosomas. El código de bases nitrogenadas de nuestro RNA pasará en los ribosomas a una secuencia de aminoácidos concreta.




  • tRNA. RNA transferente, encargado de buscar los aminoácidos específicos en el citosol y llevarlos al ribosoma para proceder a la síntesis de proteínas.


  • rRNA: RNA ribosómico, componente intrínseco de los ribosomas, con importantes funciones en ese proceso de traducción de mRNA en proteínas.

Transcripcion Genética

La transcripción consiste en la copia de 1 cadena de DNA para dar una cadena de RNA, gracias a la complementariedad de bases. La cadena que se copia se conoce como cadena molde o cadena transcrita. Esta cadena será obviamente complementaria al RNA.


Se conoce como unidad de transcripción a aquel DNA que da lugar mediante el proceso de transcripción a una molécula de RNA. No siempre se corresponderá una unidad de transcripción con un gen, ya que en los organismos procariotas podrán existir operones, con lo que se coordinarán varios genes, que se transcribirán de manera simultánea.
Para la transcripción resulta básica la presencia de la RNA polimerasa, ya que este enzima es el encargado de sintetizar el RNA, gracias a la complementariedad con la cadena molde. La RNA polimerasa da inicio a la transcripción cuando se une al promotor. Se conoce como punto +1 al punto donde se inicia la transcripción. El enzima se deslizará por el molde hasta alcanzar la secuencia acabadora, situada en la parte final de la unidad de transcripción. Todos los nucleótidos situados antes de +1 son los situados upstream o hacia 5’. Estos nucleótidos reciben numeración negativa. Los situados después de +1 están situados downstream o hacia 3’.
A lo largo del DNA, las unidades de transcripción pueden situarse en cualquiera de las dos cadenas, lo que implicaría dificultades para ilustrar este proceso. Se ha determinado arbitrariamente, que la transcripción se inicie siempre de izquierda a derecha, desde 3’ a 5’. En paralelo a la cadena de RNA se pone una sola cadena de DNA, pero no la complementaria, sino la que es idéntica al RNA, con las diferencias típicas entre DNA y RNA, como la sustitución de T por U.



El RNA que se forma como resultado de la transcripción, podrá ser el tránscrito primario. Se ha de tener en cuenta que existe tres tipos de RNA, dos de los cuales son productos finales, como el rRNA y el tRNA, mientras que el mRNA deberá llegar a los ribosomas, donde podrá dar lugar a las proteínas.
Dentro del proceso de la transcripción puede haber otras proteínas implicadas, que serán las proteínas reguladoras. Se ha de tener en cuenta que la mayoría de los genes está sometidos a regulación, de manera que existirán diferentes ritmos de síntesis de RNA, con más o menos frecuencia. Esta regulación afecta a la expresión del gen, actuando a nivel de la transcripción normalmente.
Muchas de las cosas anteriormente mencionadas se pueden aplicar tanto a procariotas como a eucariotas, por lo que nos centraremos a partir de este punto en la transcripción en procariotas.
El caso que estudiaremos más el de la bacteria E.coli, que posee unos 5000 genes. Al tratarse de una bacteria, posee un único cromosoma, circular. La regulación se da principalmente a nivel de la transcripción. Siendo una bacteria, posee un sistema de rgulación típico en las bacterias, que es la coordinación de diferentes genes mediante una estructura característica de las bacterias, que se conoce como operones. Los operones permiten la coordinación de diferentes genes bajo un mismo promotor, dando como resultado un único RNA. La inmensa mayoría de los organismos procariotas carece de intrones repartidos a lo largo de su genoma.
La RNA polimerasa es el único enzima de síntesis de RNA, capaz de sintetizar los 3 tipos diferentes de RNA. Existirán 2 tipos de promotores, los fuertes, con un alto índice de transcripción, y los débiles, con una transcripción más reducida. Estos promotores dependen de su afinidad por la RNA polimerasa.





Duplicación del ADN

La vida de los seres vivos es muy variable , por tanto para que esta no se extinga ha de haber un momento en se reproduzcan, lo cual lleva implicito la formación de copias del ADN del progenitor o progenitores .

Se dieron muchas hipótesis sobre como se dupllicaba el ADN hasta que Watson y Crick propusieron la hipótesis semiconservativa (posteriormente demostrada por Meselson Y Stahl en 1957), según la cual, las nuevas moléculas de ADN formadas a partir de otra antigua, tienen una hebra antigua y otra nueva.




MECANISMO DE DUPLICACIÓN DEL ADN EN PROCARIONTES

Hay que recordar que es circular y ocurre en tres etapas:

1ª etapa: desenrrollamiento y apertura de la doble hélice.en el punto ori-c.

Intervienen un grupo de enzimas y proteinas, a cuyo conjunto se denomina replisoma

* Primero: intervienen las helicasas que facilitan en desenrrollamiento

* Segundo: actuan las girasas y topoisomerasas que eliminan la tensión generada por la torsión en el desenrrollamiento.

Tercero: Actuan las proteinas SSBP que se unen a las hebras molde para que no vuelva a enrollarse.




2ª etapa. síntesis de dos nuevas hebras de ADN.

* Actuan las ADN polimerasas para sintetizar las nuevas hebras en sentido 5´-3´, ya que la lectura se hace en el sentido 3´-5´.

* Intervienen las ADN polimerass I y III, que se encargan de la replicación y corrección de errores. La que lleva la mayor parte del trabajo es la ADN polimerasa III

* Actua la ADN polimerasa II, corrigiendo daños causados por agentes físicos.

La cadena 3´-5´es leida por la ADN polimerasa III sin ningún tipo de problemas ( cadena conductora). En la cadena 5´-3´ no puede ser leida directamente, esto se soluciona leyendo pequeños fragmentos ( fragmentos de Okazaki ) que crecen en el sentido 5´-3´y que más tarde se unen . Esta es la hebra retardada,llamada de esta forma porque su síntesis es más lenta.





La ADN polimerasa III es incapaz de iniciar la síntesis por sí sola, para esto necesita un cebador (ARN) que es sintetizado por una ARN polimerasa (=primasa). Este cebador es eliminado posteriormente.

3ª etapa: corrección de errrores.

El enzima principal que actua como comadrona (R. Shapiro) es la ADN polimerasa III, que corrige todos los errores cometidos en la replicación o duplicación. Intervienen otros enzimas como:

* Endonucleasas que cortan el segmento erroneo.

* ADN polimerasas I que rellenan correctamente el hueco.

* ADN ligasas que unen los extremos corregidos



Estructura de las Histonas

Las histonas son proteínas básicas, de baja masa molecular, muy conservadas evolutivamente entre los eucariotas y en algunos procariotas. Forman la cromatina junto con el ADN, sobre la base de unas unidades conocidas como nucleosomas.

Las cuatro histonas core, o nucleares, forman un octámero (paquetes de 8 moléculas) alrededor del cual se enrolla el ADN, en una longitud variable en función del organismo. Este octámero se ensambla a partir de un tetrámero de las histonas llamadas H3 y H4, al que se agregan dos heterodímeros de las histonas denominadas H2A y H2B. Las histonas externas, o linker, H1 (y H5 en aves) interaccionan con el ADN internucleosomal. El conjunto del ADN enrollado alrededor del octámero de histonas, junto con la histona H1 y una cierta longitud de ADN linker, o internucleosomal constituye lo que se conoce como nucleosoma. Las histonas core desarrollan un papel decisivo en el primer nivel de compactación del ADN dentro del núcleo, en la estructura conocida como nucleosoma. Las histonas linker, por otro lado, producen un empaquetamiento de orden superior de los nucleosomas.


Las histonas contienen un motivo estructural muy importante para los contactos moleculares dentro del octámero de histonas core, denominado histone fold (se podría traducir como pliegue de histona). Este motivo consiste en 65 aminoácidos que se estructuran en una organización extendida tipo hélice-hoja-hélice. En concreto, contiene una corta hélice alfa, un giro/hoja beta, una hélice alfa larga, otro giro/hoja beta, y otra hélice alfa corta.

Las histonas core pueden ser modificadas covalente y post-traduccionalmente, en general en sus extremos amino-terminales, mediante reacciones catalizadas por una serie de actividades enzimáticas. Éstas pueden ser citoplasmáticas, y actúan sobre las histonas previamente a su ensamblamiento en los nucleosomas, o bien, nucleares y afectan a histonas nucleosomales. Se ha postulado una teoría denominada histone code, o "código de histonas", según la que estas modificaciones pueden tener consecuencias en cuanto a: 1) La facilidad con la que proteínas asociadas a cromatina (factores transcripcionales, etc ...) podrían acceder al ADN. 2) La generación de combinaciones de modificaciones en un extremo de histona, o en varios dentro de un nucleosoma. 3) Las estructuras de eucromatina y heterocromatina serán en mayor medida dependientes de las concentraciones locales de histonas modificadas. En conclusión, estas modificaciones podrían extender la información potencial del material genético.

domingo, 22 de marzo de 2009

Cadenas Antiparalelas - Antisentido

Una secuencia de ADN se denomina "sentido" (en inglés, sense) si su secuencia es la misma que la secuencia de un ARN mensajero que se traduce en una proteína. La secuencia de la hebra de ADN complementaria se denomina "antisentido" (antisense). En ambas hebras de ADN de la doble hélice pueden existir tanto secuencias sentido, que codifican ARNm, como antisentido, que no lo codifican. Es decir, las secuencias que codifican ARNm no están todas presentes en una sola de las hebras, sino repartidas entre las dos hebras. Tanto en procariotas como en eucariotas se producen ARNs con secuencias antisentido, pero la función de esos ARNs no está completamente clara. Se ha propuesto que los ARNs antisentido están implicados en la regulación de la expresión génica mediante apareamiento ARN-ARN: los ARNs antisentido se aparearían con los ARNm complementarios, bloqueando de esta forma su traducción.


En unas pocas secuencias de ADN en procariotas y eucariotas (este hecho es más frecuente en plásmidos y virus), la distinción entre hebras sentido y antisentido es más difusa, debido a que presentan genes superpuestos. En estos casos, algunas secuencias de ADN tienen una función doble, codificando una proteína cuando se lee a lo largo de una hebra, y una segunda proteína cuando se lee en la dirección contraria a lo largo de la otra hebra. En bacterias, esta superposición puede estar involucrada en la regulación de la transcripción del gen, mientras que en virus los genes superpuestos aumentan la cantidad de información que puede codificarse en sus diminutos genomas.



Estructura en Doble Hélice del ADN

El ADN existe en muchas conformaciones. Sin embargo, en organismos vivos sólo se han observado las conformaciones ADN-A, ADN-B y ADN-Z. La conformación que adopta el ADN depende de su secuencia, la cantidad y dirección de superenrrollamiento que presenta, la presencia de modificaciones químicas en las bases y las condiciones de la solución, tales como la concentración de iones de metales y poliaminas. De las tres conformaciones, la forma "B" es la más común en las condiciones existentes en las células. Las dos dobles hélices alternativas del ADN difieren en su geometría y dimensiones.






De izquierda a derecha, las estructuras de ADN A, B y Z



La forma "A" es una espiral que gira hacia la derecha más amplia que la "B", con una hendidura menor superficial y más amplia, y una hendidura mayor más estrecha y profunda. La forma "A" ocurre en condiciones no fisiológicas en formas deshidratadas de ADN, mientras que en la célula puede producirse en apareamientos híbridos de hebras ADN-ARN, además de en complejos enzima-ADN.
Segmentos de ADN en los que las bases han sido modificadas por metilación pueden sufrir cambios conformacionales mayores y adoptar la forma "Z". En este caso, las hebras giran alrededor del eje de la hélice en una espiral que gira a mano izquierda, lo opuesto a la forma "B" más frecuente. Estas estructuras poco frecuentes pueden ser reconocidas por proteínas específicas que se unen a ADN-Z y pueden estar implicadas en la regulación de la transcripción.

Componentes del ADN



La estructura de soporte de una hebra de ADN está formada por unidades alternas de grupos fosfato y azúcar. El azúcar en el ADN es una pentosa, concretamente, la desoxirribosa.

-Ácido fosfórico:
Su fórmula química es H3PO4. Cada nucleótido puede contener uno (monofosfato: AMP), dos (difosfato: ADP) o tres (trifosfato: ATP) grupos de ácido fosfórico, aunque como monómeros constituyentes de los ácidos nucléicos sólo aparecen en forma de nucleósidos monofosfato.



-Desoxirribosa:
Es un monosacárido de 5 átomos de carbono (una pentosa) derivado de la ribosa, que forma parte de la estructura de nucleótidos del ADN. Su fórmula es C5H10O4. Una de las principales diferencias entre el ADN y el ARN es el azúcar, pues en el ARN la 2-desoxirribosa del ADN es reemplazada por una pentosa alternativa, la ribosa.
Las moléculas de azúcar se unen entre sí a través de grupos fosfato, que forman enlaces fosfodiéster entre los átomos de carbono tercero (3′, «tres prima») y quinto (5′, «cinco prima») de dos anillos adyacentes de azúcar. La formación de enlaces asimétricos implica que cada hebra de ADN tiene una dirección. En una doble hélice, la dirección de los nucleótidos en una hebra (3′ → 5′) es opuesta a la dirección en la otra hebra (5′ → 3′). Esta organización de las hebras de ADN se denomina antiparalela; son cadenas paralelas, pero con direcciones opuestas. De la misma manera, los extremos asimétricos de las hebras de ADN se denominan extremo 5′ («cinco prima») y extremo 3′ («tres prima») respectivamente.





-Bases nitrogenadas:
Las cuatro bases nitrogenadas mayoritarias que se encuentran en el ADN son la adenina (abreviado A), citosina (C), guanina (G) y timina (T). Cada una de estas cuatro bases está unida al armazón de azúcar-fosfato a través del azúcar para formar el nucleótido completo (base-azúcar-fosfato). Las bases son compuestos heterocíclicos y aromáticos con dos o más átomos de nitrógeno, y, dentro de las bases mayoritarias, se clasifican en dos grupos: las bases púricas o purinas (adenina y guanina), derivadas de la purina y formadas por dos anillos unidos entre sí, y las bases pirimidínicas o pirimidinas (citosina y timina), derivadas de la pirimidina y con un solo anillo. En los ácidos nucléicos existe una quinta base pirimidínica, denominada uracilo (U), que normalmente ocupa el lugar de la timina en el ARN y difiere de ésta en que carece de un grupo metilo en su anillo. El uracilo no se encuentra habitualmente en el ADN, sólo aparece raramente como un producto residual de la degradación de la citosina por procesos de desaminación oxidativa.

Propiedades Físicas y Químicas del ADN

El ADN es un largo polímero formado por unidades repetitivas, los nucleótidos. Una doble cadena de ADN mide de 22 a 26 Ångströms (2,2 a 2,6 nanómetros) de ancho, y una unidad (un nucleótido) mide 3,3 Å (0,33 nm) de largo. Aunque cada unidad individual que se repite es muy pequeña, los polímeros de ADN pueden ser moléculas enormes que contienen millones de nucleótidos. Por ejemplo, el cromosoma humano más largo, el cromosoma número 1, tiene aproximadamente 220 millones de pares de bases.





En los organismos vivos, el ADN no suele existir como una molécula individual, sino como una pareja de moléculas estrechamente asociadas. Las dos cadenas de ADN se enroscan sobre sí mismas formando una especie de escalera de caracol, denominada doble hélice. El modelo de estructura en doble hélice fue propuesto en 1953 por James Watson y Francis Crick (el artículo Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid fue publicado el 25 de abril de 1953 en Nature). El éxito de éste modelo radicaba en su consistencia con las propiedades físicas y químicas del ADN. El estudio mostraba además que la complementariedad de bases podía ser relevante en su replicación, y también la importancia de la secuencia de bases como portador de información genética. Cada unidad que se repite, el nucleótido, contiene un segmento de la estructura de soporte (azúcar + fosfato), que mantiene la cadena unida, y una base, que interacciona con la otra cadena de ADN en la hélice. En general, una base ligada a un azúcar se denomina nucleósido y una base ligada a un azúcar y a uno o más grupos fosfatos recibe el nombre de nucleótido. Cuando muchos nucleótidos se encuentran unidos, como ocurre en el ADN, el polímero resultante se denomina polinucleótido.

Estructuras del DNA


El ADN es una molécula bicatenaria, es decir, está formada por dos cadenas dispuestas de forma antiparalela y con las bases nitrogenadas enfrentadas. En su estructura tridimensional, se distinguen distintos niveles:

-Estructura primaria:
Secuencia de nucleótidos encadenados. Es en estas cadenas donde se encuentra la información genética, y dado que el esqueleto es el mismo para todos, la diferencia de la información radica en la distinta secuencia de bases nitrogenadas. Esta secuencia presenta un código, que determina una información u otra, según el orden de las bases.
-Estructura secundaria:
Es una estructura en doble hélice. Permite explicar el almacenamiento de la información genética y el mecanismo de duplicación del ADN. Fue postulada por Watson y Crick, basándose en la difracción de rayos X que habían realizado Franklin y Wilkins, y en la equivalencia de bases de Chargaff, según la cual, la suma de adeninas más guaninas es igual a la suma de timinas más citosinas.
Es una cadena doble, dextrógira o levógira, según el tipo de ADN. Ambas cadenas son complementarias, pues la adenina y la guanina de una cadena se unen, respectivamente, a la timina y la citosina de la otra. Ambas cadenas son antiparalelas, pues el extremo 3´ de una se enfrenta al extremo 5´ de la homóloga.
Existen tres modelos de ADN. El ADN de tipo B es el más abundante y es el descubierto por Watson y Crick.
-Estructura terciaria:
Se refiere a cómo se almacena el ADN en un espacio reducido, para formar los cromosomas. Varía según se trate de organismos procariotas o eucariotas:
En procariotas el ADN se pliega como una súper-hélice, generalmente en forma circular y asociada a una pequeña cantidad de proteínas. Lo mismo ocurre en organelos celulares como las mitocondrias y en los cloroplastos. En eucariotas, dado que la cantidad de ADN de cada cromosoma es muy grande, el empaquetamiento ha de ser más complejo y compacto; para ello se necesita la presencia de proteínas, como las histonas y otras proteínas de naturaleza no histónica (en los espermatozoides estas proteínas son las protaminas).

Ácido Desoxirribonucleico



El ácido desoxirribonucleico, frecuentemente abreviado como ADN (y también DNA, del inglés DeoxyriboNucleic Acid), es un tipo de ácido nucleico, una macromolécula que forma parte de todas las células. Contiene la información genética usada en el desarrollo y el funcionamiento de los organismos vivos conocidos y de algunos virus, siendo el responsable de su transmisión hereditaria.

Desde el punto de vista químico, el ADN es un polímero de nucleótidos, es decir, un polinucleótido. Un polímero es un compuesto formado por muchas unidades simples conectadas entre sí, como si fuera un largo tren formado por vagones. En el ADN, cada vagón es un nucleótido, y cada nucleótido, a su vez, está formado por un azúcar (la desoxirribosa), una base nitrogenada (que puede ser adenina→A, timina→T, citosina→C o guanina→G) y un grupo fosfato que actúa como enganche de cada vagón con el siguiente. Lo que distingue a un vagón (nucleótido) de otro es, entonces, la base nitrogenada, y por ello la secuencia del ADN se especifica nombrando sólo la secuencia de sus bases. La disposición secuencial de estas cuatro bases a lo largo de la cadena (el ordenamiento de los cuatro tipos de vagones a lo largo de todo el tren) es la que codifica la información genética: por ejemplo, una secuencia de ADN puede ser ATGCTAGATCGC... En los organismos vivos, el ADN se presenta como una doble cadena de nucleótidos, en la que las dos hebras están unidas entre sí por unas conexiones denominadas puentes de hidrógeno.

Para que la información que contiene el ADN pueda ser utilizada por la maquinaria celular, debe copiarse en primer lugar en unos trenes de nucleótidos, más cortos y con unas unidades diferentes, llamados ARN. Las moléculas de ARN se copian exactamente del ADN mediante un proceso denominado transcripción. Una vez procesadas en el núcleo celular, las moléculas de ARN pueden salir al citoplasma para su utilización posterior. La información contenida en el ARN se interpreta usando el código genético, que especifica la secuencia de los aminoácidos de las proteínas, según una correspondencia de un triplete de nucleótidos (codón) para cada aminoácido. Esto es, la información genética (esencialmente: qué proteínas se van a producir en cada momento del ciclo de vida de una célula) se halla codificada en las secuencias de nucleótidos del ADN y debe traducirse para poder ser empleada. Tal traducción se realiza empleando el código genético a modo de diccionario. El diccionario "secuencia de nucleótido-secuencia de aminoácidos" permite el ensamblado de largas cadenas de aminoácidos (las proteínas) en el citoplasma de la célula. Por ejemplo, el caso anterior ATGCTAGATCGC... la ARN polimerasa comenzaría a transcribir una molécula de ARN que se leería AUG-CUA-GAU-CGC-... empleando como molde la cadena complementaria del ADN antes citado (sería pues TAC-GAT-CTA-CGC-...); el ARN resultante, utilizando el código genético, se traduciría como la secuencia de aminoácidos metionina-leucina-ácido aspártico-arginina-...

Las secuencias de ADN que constituyen la unidad fundamental, física y funcional de la herencia se denominan genes. Cada gen contiene una parte que se transcribe a ARN y otra que se encarga de definir cuándo y dónde deben expresarse. La información contenida en los genes (genética) se emplea para generar ARN y proteínas, que son los componentes básicos de las células, los "ladrillos" que se utilizan para la construcción de los orgánulos celulares, entre otras funciones.

Dentro de las células, el ADN está organizado en estructuras llamadas cromosomas que, durante el ciclo celular, se duplican antes de que la célula se divida. Los organismos eucariotas (por ejemplo, animales, plantas, y hongos) almacenan la inmensa mayoría de su ADN dentro del núcleo celular y una mínima parte en los elementos celulares llamados mitocondrias, y en los plastos, en caso de tenerlos; los organismos procariotas (bacterias y arqueas) lo almacenan en el citoplasma de la célula, y, por último, los virus ADN lo hacen en el interior de la cápsida de naturaleza proteica. Existen multitud de proteínas, como por ejemplo las histonas y los factores de transcripción, que se unen al ADN dotándolo de una estructura tridimensional determinada y regulando su expresión. Los factores de transcripción reconocen secuencias reguladoras del ADN y especifican la pauta de transcripción de los genes. El material genético completo de una dotación cromosómica se denomina genoma y, con pequeñas variaciones, es característico de cada especie.




Transmisión Genética


La herencia genética es la transmisión a través del material genético contenido en el núcleo celular, de las características anatómicas, fisiológicas, etc. de un ser vivo a sus descendientes. El ser vivo resultante tendrá caracteres de uno o los dos padres.

La herencia consiste en la transmisión a su descendencia de los caracteres de los ascendentes. El conjunto de todos los caracteres transmisibles, que vienen fijado en los genes, recibe el nombre de genotipo y su manifestación exterior en el aspecto del individuo el de fenotipo. Se llama idiotipo al conjunto de posibilidades de manifestar un carácter que presenta un individuo.

Para que los genes se transmitan a los descendientes es necesaria una reproducción idéntica que dé lugar a una réplica de cada uno de ellos; este fenómeno tiene un lugar en la mitosis. En el organismo que surge del cigoto, a medida que va desarrollándose a partir del cúmulo inicial de célula es posible diferenciar dos estirpes celulares: una línea somática, que dará lugar a los sistemas orgánicos que mantendrán con vida al organismo, y otra germinal, que será la encargada de que el organismo se reproduzca.

La mitosis, o división del núcleo de la célula, es un proceso que consta de cuatro etapas: profase (los cromosomas se espiralizan y hacen visibles, desaparecen el nucléolo y la membrana nuclear, aparece una serie de filamentos llamado huso acromático donde se insertan los cromosomas), metafase (los cromosomas adquieren una forma completa y se disponen en una zona central llamada placa ecuatorial), anafase (los cromosomas se dividen en dos partes, llamadas cromatidios, que emigran hacia los polos) y telofase (los cromatidios se sitúan en los polos y reaparecen el nucléolo y la membrana nuclear). Después de esta última fase se produce un periodo llamado interfase, en el cual los cromosomas vuelven a hacerse invisibles y los genes entran en acción.

Lo esencial de la herencia queda establecido en la denominada teoría cromosómica de la herencia:

· Los genes están situados en los cromosomas.
· Los genes están dispuestos linealmente en los cromosomas.
· La recombinación de los genes se corresponde con el intercambio de segmentos cromosómicos.


Cromosomas

En biología, se denomina cromosoma (del griego χρώμα, -τος chroma, color y σώμα, -τος soma, cuerpo o elemento) a cada uno de los pequeños cuerpos en forma de bastoncillos en que se organiza la cromatina del núcleo celular durante las divisiones celulares (mitosis y meiosis). La cromatina es un material microscópico que lleva la información genética de los organismos eucariotas y está constituida por ADN asociado a proteínas especiales llamadas histonas. Este material se encuentra en el núcleo de las células eucariotas y se visualiza como una maraña de hilos delgados. Cuando el núcleo celular comienza el proceso de división (cariocinesis), esa maraña de hilos inicia un fenómeno de condensación progresivo que finaliza en la formación de entidades discretas e independientes: los cromosomas. Por lo tanto, cromatina y cromosoma son dos aspectos morfológicamente distintos de una misma entidad celular.



Diagrama de un cromosoma eucariótico duplicado y condensado (en metafase mitótica). (1) Cromátida, cada una de las partes idénticas de un cromosoma luego de la duplicación del ADN. (2) Centrómero, el lugar del cromosoma en el cual ambas cromátidas se tocan. (3) Brazo corto. (4) Brazo largo.


Cuando se examinan con detalle durante la mitosis, se observa que los cromosomas presentan una forma y un tamaño característicos. Cada cromosoma tiene una región condensada, o constreñida, llamada centrómero, que confiere la apariencia general de cada cromosoma y que permite clasificarlos según la posición del centrómero a lo largo del cromosoma. Otra observación que se puede realizar es que el número de cromosomas de los individuos de la misma especie es constante. Esta cantidad de cromosomas se denomina número diploide y se simboliza como 2n. Cuando se examina la longitud de tales cromosomas y la situación del centrómero surge el segundo rasgo general: para cada cromosoma con una longitud y una posición del centrómero determinada existe otro cromosoma con rasgos idénticos, o sea, casi todos los cromosomas se encuentran formando parejas. Los miembros de cada par se denominan cromosomas homólogos.

Proyecto del Genoma Humano

El Proyecto Genoma Humano (PGH) (Human Genome Project en inglés) consiste en clonar las posiciones relativas de todos los nucleótidos (o pares de bases) e identificar los 20.000 a 25.000 genes presentes en él.

El proyecto, dotado con 90.000 millones de dólares, fue fundado en 1990 por el Departamento de Energía y los Institutos de la Salud de los Estados Unidos, con un plazo de realización de 15 años. Debido a la amplia colaboración internacional, a los avances en el campo de la genómica (especialmente, en el análisis de secuenciación), así como los avances en la tecnología informática, un borrador inicial del genoma fue terminado en el año 2003 (anunciado conjuntamente por el presidente George W. Bush y el primer ministro británico Tony Blair el 26 de junio, 2003), dos años antes de lo planeado.


El Genoma Humano es la secuencia completa de ADN de un ser humano. Está dividido en 24 fragmentos, cuya condensación altamente organizada conforma los 23 pares de cromosomas distintos de la especie humana (22 autosomas + 1 par de cromosomas sexuales: X e Y, en los hombres, ó X y X, en las mujeres). El genoma humano está compuesto por aproximadamente entre 25000 y 30000 genes distintos, unos son genes reguladores, otros genes codifican proteinas; si bien la secuencia codificante de proteínas supone menos de un 1,5% de la secuencia. Cada uno de estos genes contiene codificada la información necesaria para la síntesis de una o varias proteínas (o ARN funcionales, en el caso de los genes ARN).

Cada ser humano posee 46 cromosomas (salvo aquellos que padecen alguna monosomía o trisomía, como los enfermos con Síndrome de Down, que poseen 47). De estos hay 44 autosomas, 22 heredados de la madre y 22 del padre, y dos cromosomas sexuales que determinan el sexo del individuo: un cromosoma X, heredado de la madre, y un X (en las mujeres) o un Y (en los varones), heredado del padre. La unión de un cromosoma X con otro cromosoma X originará mujeres y la unión de un cromosoma X con un cromosoma Y originará hombres.

El conocimiento de la secuencia completa del genoma humano es una potente herramienta para la investigación en biomedicina y genética clínica, potenciando el avance en el conocimiento de la patogenia de enfermedades poco conocidas, en el desarrollo de nuevos tratamientos y de mejores diagnósticos. No obstante el conocimiento de la secuencia del genoma, es decir, del genotipo completo de un organismo, es tan sólo un primer paso para la comprensión, en última instancia, de su fenotipo. En consecuencia, en la actualidad la ciencia de la genómica está aun bastante lejos de poder plantear seriamente los problemas éticos, sociales y jurídicos que sin embargo están siendo ya ampliamente debatidos. Por ejemplo, hipotéticamente el conocimiento del genoma humano podría facilitar la realización de prácticas eugenésicas, de selección sistemática de embriones, la discriminación laboral o en la suscripción de seguros de vida, basada en la diferente predisposición a padecer ciertas enfermedades, etc. Esto exige una exhaustiva regulación legislativa relativa al uso del conocimiento del genoma humano, pero no debería suponer un impedimento al avance en dicho conocimiento, que es en sí mismo inocuo.

Trastornos Genéticos

Los seres humanos tienen varias enfermedades genéticas, a menudo causada por genes recesivos. Algunos ejemplos de enfermedades genéticas humanas son: el síndrome de Turner, la enfermedad de Huntington, el cáncer, el autismo y la anemia de células falciformes. Para una lista más completa véase la lista de trastornos genéticos. Los trastornos genéticos suelen suceder en todas partes y son muy comunes en algunos lugares.

-Síndrome de Síndrome del maullido del gato- Un trastorno causado por una deleción en el brazo corto del cromosoma 5. Esta supresión se traduce en un fenotipo de retraso mental, problemas de comportamiento, y un gato como la palabra. Aproximadamente uno de cada 50000 nacimientos tendrá el síndrome.
-Enfermedad de Huntington- Un trastorno neurológico causado por un trinucleoide repite la secuencia. Huntingtons es un rasgo autosómico dominante. La mayoría de los individuos con la enfermedad en primer lugar muestran el fenotipo alrededor de los 40 años de edad. Los síntomas son movimientos incontrolables, charque, retraso mental y problemas de comportamiento.
-Síndrome de Turner- Es una enfermedad genética rara caracterizada por presencia de un solo cromosoma X. Fenotípicamente son mujeres (por ausencia de cromosoma Y). A las mujeres con síndrome de Turner les falta parte o todo un cromosoma X. La falta de cromosoma Y determina el sexo femenino de todos los individuos afectados, y la ausencia del segundo cromosoma X, la falta de desarrollo de los caracteres sexuales primarios y secundarios. Esto confiere a las mujeres que padecen el síndrome de Turner un aspecto infantil e infertilidad de por vida. Su incidencia es de alrededor de 1 de cada 2.500 niñas.
-Síndrome de Klinefelter- Un trastorno en los hombres provocada por la presencia de un cromosoma X adicional. Estas personas tienen un genotipo de 47, tienen el genotipo XXY en vez del normal XY. Los síntomas de este síndrome son la ampliación senos, testículos pequeños, y la esterilidad.



-Síndrome de Down-

Principio de Hardy-Weinberg

En genética de poblaciones, el principio de Hardy-Weinberg (PHW) (también equilibrio de Hardy-Weinberg o ley de Hardy-Weinberg) establece que la composición genética de una población permanece en equilibrio mientras no actúe la selección natural ni ningún otro factor y no se produzca ninguna mutación. Es decir, la herencia mendeliana, por sí misma, no engendra cambio evolutivo. Recibe su nombre del matemático inglés G. H. Hardy y del físico aleman Wilhelm Weinberg que establecieron el teorema independientemente en 1908.

En el lenguaje de la genética de poblaciones, la ley de Hardy-Weinberg afirma que, bajo ciertas condiciones, tras una generación de apareamiento al azar, las frecuencias de los genotipos de un locus individual se fijarán en un valor de equilibro particular. También especifica que esas frecuencias de equilibrio se pueden representar como una función sencilla de las frecuencias alélicas en ese locus. En el caso más sencillo, con un locus con dos alelos A y a, con frecuencias alélicas de p y q respectivamente, el PHW predice que la frecuencia genotípica para el homocigoto dominante AA es p2, la del heterocigoto Aa es 2pq y la del homocigoto recesivo aa, es q2. El principio de Hardy-Weinberg es una expresión de la noción de una población que está en "equilibrio genético", y es un principio básico de la genética de poblaciones.


Tabla 1: Cuadrado de Punnett para el equilibrio de Hardy-Weinberg





Las tres posibles frecuencias genotípicas finales de la descendencia son:







Estas frecuencias se llaman frecuencias de Hardy-Weinberg (o proporciones de Hardy-Weinberg). Esto se consigue en una generación, y solo hace falta suponer un apareamiento aleatorio en una población de tamaño infinito.

A veces una población se crea juntando machos y hembras con distintas frecuencias alélicas. En este caso, la suposición de una sola población queda violada hasta la siguiente generación, de manera que la primera generación no tendrá equilibrio de Hardy-Weinberg. Las generaciones sucesivas sí tendrán equilibrio de Hardy-Weinberg.

Genética de Poblaciones

La genética de poblaciones es la rama de la genética cuya problematica es describir la variación y distribución biológica, con el objeto de dar explicación a fenómenos evolutivos. Para ello, define a una población como un grupo de individuos de la misma especie que están aislados reproductivamente de otros grupos afines. Estas poblaciones, están sujetas a cambios evolutivos en los que subyacen cambios genéticos, los que a su vez están influenciados por factores como la selección natural y la deriva genética que actúan principalmente disminuyendo la variabilidad de las poblaciones, o migración y mutación que actúan aumentándola.




Cabe destacar, que la pérdida de variabilidad genética en las poblaciones trae consigo dos graves problemas:

-Coarta la posibilidad de que el hombre pueda realizar mejoramiento genético en especie de interés comercial y/o recreativo.
-Disminuye la eficacia biológica (fitness) de las especies ante nuevos cambios ambientales.


Por su parte, la presencia de variabilidad genética es deseable no solo para mejoramiento genético o conservación de especies, ya que el rol fundamental de la variabilidad genética es ser las materia prima para los procesos evolutivos, sin variabilidad no hay evolución. La interacción de estos factores con las poblaciones en el tiempo, permite la existencia de gran número de especies con variadas estructuras poblacionales y formas de vida.

Así, la genética de poblaciones es un elemento esencial de la síntesis evolutiva moderna. Sus principales fundadores, Sewall Wright, J.B.S. Haldane y Ronald Fisher, establecieron además las bases formales de la genética cuantitativa.

Genoma Humano

El genoma humano es el genoma (del griego ge-o: que genera, y -ma: acción) del Homo sapiens, es decir, la secuencia de ADN contenida en 23 pares de cromosomas en el núcleo de cada célula humana diploide. De los 23 pares, 22 son cromosomas autosómicos y un par es determinante del sexo (dos cromosomas X en mujeres y uno X y uno Y en hombres). El genoma haploide (es decir, con una sóla representación de cada par) tiene una longitud total aproximada de 3200 millones de pares de bases de ADN (3200 Mb) que contienen unos 20.000-25.000 genes (las estimaciones más recientes apuntan a unos 20.500). De las 3200 Mb unas 2950 Mb corresponden a eucromatina y unas 250 Mb a heterocromatina. El Proyecto Genoma Humano produjo una secuencia de referencia del genoma humano eucromático, usado en todo el mundo en las ciencias biomédicas.




La secuencia de ADN que conforma el genoma humano contiene codificada la información necesaria para la expresión, altamente coordinada y adaptable al ambiente, del proteoma humano, es decir, del conjunto de proteínas del ser humano. Las proteínas, y no el ADN, son las principales biomoléculas efectoras; poseen funciones estructurales, enzimáticas, metabólicas, reguladoras, señalizadoras..., organizándose en enormes redes funcionales de interacciones. En definitiva, el proteoma fundamenta la particular morfología y funcionalidad de cada célula. Asimismo, la organización estructural y funcional de las distintas células conforma cada tejido y cada órgano, y, finalmente, el organismo vivo en su conjunto. Así, el genoma humano contiene la información básica necesaria para el desarrollo físico de un ser humano completo.

El genoma humano presenta una densidad de genes muy inferior a la que inicialmente se había predicho, con sólo en torno al 1,5%[2] de su longitud compuesta por exones codificantes de proteínas. Un 70% está compuesto por ADN extragénico y un 30 % por secuencias relacionadas con genes. Del total de ADN extragénico, aproximadamente un 70% corresponde a repeticiones dispersas, de manera que, más o menos, la mitad del genoma humano corresponde a secuencias repetitivas de ADN. Por su parte, del total de ADN relacionado con genes se estima que el 95% corresponde a ADN no codificante: pseudogenes, fragmentos de genes, intrones, secuencias UTR...

Genética Humana



La Genética Humana describe el estudio de la herencia al igual que ocurre en los seres humanos. La Genética Humana abarca una variedad de campos incluidos: la genética clásica, citogenética, genética molecular, Biología molecular, genómica, genética de poblaciones, genética del desarrollo, Genética médica y el asesoramiento genético. El estudio de la genética humana puede ser útil ya que puede responder preguntas acerca de la naturaleza humana, comprender el desarrollo eficaz para el tratamiento de enfermedades y la genética de la vida humana.






La herencia de los rasgos para los seres humanos se basan en el modelo de herencia de Gregor Mendel. Mendel deduce que la herencia depende de unidades discretas de la herencia, llamado genes.


-Herencia autosómica dominante
Los rasgos autosómicos se asocian con una sola en un autosome (cromosoma no sexual) se les llama "dominante" porque un solo ejemplar heredado de cualquiera de los padres es suficiente para causar este rasgo a aparecer. A menudo, esto significa que uno de los padres también debe tener la misma característica, arg me hoitees, ha arsénico debido a una nueva mutación. Ejemplos de autosómica: rasgo dominante y los trastornos son la enfermedad de Huntington y la acondroplasia.


-Herencia autosómica recesiva
El carácter autosómico recesivo es un patrón de herencia de un rasgo, enfermedad o trastorno que se transmite a través de las familias. Para un rasgo o enfermedad recesiva para ser mostrada dos copias del rasgo o el desorden tienen que ser presentadas. El rasgo o gen se encuentra en una cromosoma no sexual. Debido al hecho de que se toma dos copias de un rasgo para mostrar un rasgo, muchas personas pueden, sin saberlo, ser portadores de una enfermedad. De un aspecto evolutivo, una enfermedad o rasgo recesivo puede permanecer oculto durante varias generaciones antes de mostrar el fenotipo. Ejemplos de trastornos autosómica recesiva son albinismo, fibrosis quística, enfermedad de Tay-Sachs.


-Genealogías
Un árbol genealógico es un diagrama que muestra las relaciones ancestrales y la transmisión de los rasgos genéticos a lo largo de varias generaciones en una familia. Las genealogías se utilizan para ayudar a detectar muchas enfermedades genéticas. Una genealogía también puede utilizarse para ayudar a determinar las posibilidades de un progenitor para producir una descendencia con un rasgo específico. Cuatro diferentes rasgos se pueden identificar por el análisis genealógico gráfico: autosómica dominante, autosómica recesiva,X o Y(x-linked, or y-linked). La penetrancia parcial puede demostrarse y calcularse por la forma de las genealogías. La penetrancia es el porcentaje expresado con frecuencia que las personas de un determinado genotipo se manifiestan al menos en cierta medida de un determinado fenotipo mutante asociado con un rasgo. La penetrancia es el porcentaje expresada frecuentemente con la cual los individuos de un dado genotipo manifiestan al menos algún grado de un fenotipo mutante específico asociado con un rasgo. Consanguinidad, es el apareamiento entre organismos estrechamente relacionados los rasgos de claros se pueden ver en los gráficos genealógicos. El gráfico del árbol genealógico en familias reales tienen un alto grado de consanguinidad, ya que era habitual y preferible para la realeza a casarse con otro miembro de la realeza. Los consejeros genéticos usan esto para ayudar a las genealogías a determinar si los padres serán capaces de producir hijos sanos.

-Cariotipo
Un cariotipo es una herramienta muy útil en citogenética. Un cariotipo es la imagen de todos los cromosomas en la etapa de metafase organizado en función de la longitud y la posición del centrómero. Un cariotipo puede ser útil también en genética clínica, debido a su capacidad para diagnosticar trastornos genéticos. En un cariotipo normal,la aneuploidía puede ser detectado con claridad por la posibilidad de observar cualquier cromosoma faltante o adicional. EL g-banding, del cariotipo puede ser usado para detectar deleciones, inserciones, duplicaciones, inversiones y translocaciones. EL g-banding manchará los cromosomas con cintas únicas de luz y oscuras a cada cromosoma. A FISH, [[fluorescencia de hibridación in situ]], se puede utilizar para observar las supresiones, inserciones y translocaciones. El FISH (Hibridación fluorescente in situ, por sus siglas en Inglés: "fluorescent in situ hybridization") utiliza sondas fluorescentes que se unen a secuencias específicas de los cromosomas que hará que los cromosomas fluorescan un único color.



sábado, 21 de marzo de 2009

Constitución Material Genético

El material genético es ácido nucleico. Aunque existen dos clases de ácidos nucleicos, DNA y RNA, es el DNA el material genético en todas las células procariotas (bacterias) y eucariotas. Sólo para la clase de virus de RNA este ácido nucleico será el material genético, lo que constituye más bien una excepción a la generalidad de que es el DNA el material genético.


¿Qué requisitos debe cumplir una molécula para ser considerada material genético?

Para que una molécula sea material genético debe cumplir con las siguientes condiciones:

autoduplicarse
almacenar información para la síntesis de polipéptidos específicos
capacidad de variación de la información
Quizás el término autoduplicación requiera una explicación. Una molécula se autoduplica, cuando su secuencia sirve de molde para la síntesis de más moléculas iguales. Considerando a todas las macromoléculas existentes en la célula, lípidos, proteínas, carbohidratos y ácidos nucleicos (DNA y RNA), solamente una de éstas cumple con este requisito, y es el DNA. Otras moléculas, por ejemplo las proteínas, utilizan para su síntesis como molde una molécula de RNAm. Las moléculas de RNA se sintetizan a partir de la información contenida en el DNA. Así, el DNA es la única molécula de la célula que utiliza la información contenida en sí misma para la síntesis de más moléculas de DNA, por lo tanto la única capaz de autoduplicarse y de cumplir con uno de los requisitos para ser material genético.

En el caso de los virus pertenecientes la clase de virus de RNA, éste ácido nucleico, a diferencia de los RNA celulares, sí es molde de sí mismo para la síntesis de RNA viral, por lo tanto en este caso particular sí es material genético.
Experimentos realizados por Griffith en 1928 permitieron acuñar el término de "principio transformante" que más tarde, en 1944, llevarían a Avery, MacLeod y Mac Carty a determinar que la naturaleza química del material genético era DNA.
Un ácido nucleico es un polímero de nucleótidos y un nucleótido está formado por la unión covalente de una base nitrogenada + azúcar + fosfato.


Las bases nitrogenadas pueden ser púricas (Pu) ó pirimídicas (Pi)
Las bases púricas son Adenina y Guanina, y se encuentran tanto en el DNA como en el RNA.

Las bases pirimídicas son Citosina, Uracilo y Timina. La citosina es común para ambos ácidos nucleicos, en cambio el Uracilo sólo se encuentra en el RNA y la Timina sólo en DNA.
Las bases son hidrofóbicas, relativamente planas y en su secuencia está contenido el Código Genético. Una secuencia de 3 bases ó tripletes codifica 1 aminoácido.
Las bases se unen al azúcar formando un nucleósido (Fig. 3).
Además, los ácidos nucleicos pueden contener pequeñas cantidades de bases metiladas (Fig. 4).

Por ejemplo el DNA del bacteriófago T4 contiene la base hidroximetilcitosina. El DNA bacteriano puede metilarse como 5-metilcitosina, N4-metilcitosina y N6-metiladenina. La 5-metilcitosina también se encuentra en DNA de vertebrados (3% al 5% de la citosina total) y de plantas con un grado variable de metilación. El DNA de virus animales en general no se metila.
También algunas de las bases de moléculas de RNA se encuentran modificadas, tanto en los RNAt como en los RNAr. Por ejemplo moléculas de RNAt presentan seudouridina, inosina, dihidrouridina, etc..
El azúcar es una molécula cíclica que posee 5 carbonos (Fig. 2). Existen 2 tipos de azúcares en los nucleótidos. La ribosa que es específica de RNA y la 2'deoxiribosa que es específica del DNA. El azúcar se une a la base mediante un enlace b -glicosídico através de su grupo OH presente en posición 1'. Los grupos OH existentes en posiciones 5' y 3' son esenciales para la unión entre los diferentes nucleósidos.
El grupo fosfato une a los diferentes nucleósidos a través de enlaces fosfodiesteres. Un enlace fosfodiester une el grupo 3'OH de un nucleósido con el grupo 5' P del siguiente.
Al mismo tiempo, los extremos libres de la hebra polinucleotídica formada definen una polaridad, la que se señala con una flecha. Por convención, la base de la flecha debe indicar posición 5'P y la punta de la flecha posición 3'OH.
En condiciones in vivo los nucleótidos libres se encuentran trifosfatados y en el extremo 5' (fosfatos a , b y g ). La posición 3'OH siempre debe estar libre. De esta manera, estos nucleótidos son precursores adecuados para los procesos de síntesis de ácidos nucleicos, catalizando a través de la polimerasa correspondiente la formación de un enlace fosfodiester entre el grupo 3'OH de un nucleótido con el grupo fosfato a del siguiente nucleótido, liberándose los fosfatos b y g .

El Descubrimiento de la Doble Hélice





¿Cómo se llegó a la doble hélice?
Aunque actualmente, el ADN se considera el principal protagonista en la biología molecular, hace tan sólo poco más de medio siglo, muchos científicos le concedían un papel bastante secundario (pues la opinión general era que el material genético residía en las proteínas, no en el ácido desoxirribonucleico [ADN] ).
Por tanto, para entender cómo y porqué el ADN pasó a ser considerado "la molécula de la vida" creo que sería necesario repasar algunos hitos de la historia del ADN:
- 1869: El médico alemán Friedrich Miescher aísla por primera vez una molécula de ADN ( a partir de los glóbulos blancos que se encuentran en el pus).Le otorga el nombre de ácido nucleico, ya que esta substancia reside en el núcleo de la célula.
- 1928: Frederick Griffith, bacteriólogo inglés, observa en unos experimentos con pneumococos (los organismos que provocan la pneumonía) que algunas bacterias muertas transmiten "algo" a otras vivas y que este "algo"( que Griffith denominó factor transformante) altera sus rasgos hereditarios.
- En 1944,Oswald Avery, junto a Colin Macleod y Maclyn McCarty, enuncia que "el agente transformante que, casi por definición, debía constituir parte del material genético de la bacteria era el ADN" (GRIBBIN,1986,pág.166).Los resultados de sus investigaciones ponían en evidencia,por fin, que era el ADN (y no las proteínas) la substancia que almacenaba las características genéticas.
- 1952: Alfred D. Hershey y Marta Chase, mediante una serie de experimentos con fagos (conocido como "los experimentos de la batidora Warin"), confirman las tesis de Avery y su grupo, concretando más detalladamente la función del ADN.Watson, en un elogio al trabajo de estos bacteriólogos, resume sus observaciones: "Resulta tentador cocluir que la proteína del virus opera en gran medida como envoltura protectora del ADN, y que la perpetuación de la especificidad genética es , en gran medida o por completo, una fusión del ADN" (OLBY,1991,pág.455).

La importancia de este experimento reside, como dice Gribbin,"en que viene a señalar el fin de la transición que llevó a considerar que el código genético lo portaban las proteínas a considerar que lo portaba el ADN" .


-1953: Watson y Crick descubren la doble hélice



Un año después de los experimentos de Hershey-Chase apareció en la revista Nature, un artículo conjunto de Watson y Crick que narraba de forma cautelosa el descubrimiento que habían realizado; comenzaba con estas palabras:"Deseamos sugerir una estructura para la sal del ácido desoxirribonucleico (ADN).Esta estructura posee nuevas características que son de considerable interés biológico"



Las bases de la doble hélice




El descubrimiento de una fórmula tan compleja como la estructura del ADn no surgió de forma azarosa, es decir, Watson y Crick no "inventaron" la doble hélice (puesto que siempre había existido), simplemente fueron los primeros en definirla y mostrarla al mundo.

Así,para crear su modelo, la pareja de científicos analizaron y reflexionaron sobre una serie de trabajos que les proporcionaron la información base de la molécula del ADN, sin la cual hubiera sido imposible resolver la estructura de doble hélice:

- Alexander Todd establece la composición química de la molécula del ADN:dos cadenas de desoxirribosa unidas por grupos fosfato y por bases de cuatro tipos (adenina, guanina, citosina, tinina).

-Erwin Chargaff demuestra que dichas bases guardan una relación de proporcionalidad, es decir, que "la cantidad total de purinas (adenina y guanina) siempre es igual a la de pirimidinas (citosina y tinina),es más hay tanta adennina como tinina y tanta guanina como citosina " (GRIBBIN,1986,pág.169).



Estos datos serán particularmente importantes para Watson, pues a raíz de ellos descubre la complementariedad de las bases:la adenina sólo puede emparejarse con la tinina,y la guanina sólo con la citosina, formando,así, una estructura perfecta para el modelo de la doble hélice.

- Linus Pauling, en 1950, identifica como una hélice (la llamada hélice alfa) la molécula de una proteina:la hemoglobina, sugiriendo,además que la forma del ADN puede ser parecida.( 2 años después propondrá un modelo para la estructura del ADN, pero se equivoca en el planteamiento químico).


La estructura de la doble hélice


Dejando a un lado los aspectos personales (que tanto Watson como Crick relatan en sus respectivas autobiografías)la pareja de científicos conectó estupendamente, hecho que influyó positivamente en el resultado de sus estudios.

Según Gribbin,el éxito de Watson y Crick se debió a que ninguno de ellos "eran expertos en las áreas científicas reunidas para ofrecer la imágen de la doble hélice (...).Su aportación fue la capacidad de captar la perspectiva general, de tomar lo necesario de diversas disciplinas"

Para construir el modelo de ADN, Watson y Crick imaginaron una escalera de cuerda que gira en forma de hélice, manteniendo los peldaños perpendiculares:Los dos lados de la escalera estarían formados por moléculas de glúcido y fósforo dispuestas alternativamente.Los peldaños de la escalera se compondrían de las bases nitrogendadas:Adenina, Tinina, Guanina,Citosina, un par de bases por cada travesaño.Por último,las bases se unirían mediante enlaces de hidrógeno.Esta forma imaginaria resultó ser, finalmente, la estructura correcta.



Asimismo, la estructura helicoidal del ADN, resolvía perfectamente la cuestión de la replicación de los genes ( las dos cadenas se separan formando otras dos nuevas que portan la misma información genética).Aunque en el árticulo publicado en Nature,Watson y Crick sugieren timidamente esta idea:"No ha escapado a nuestra atención que el emparejamiento específico que hemos postulado sugiere de inmediato la posibilidad de un mecanismo de copia para el material genético".(SHAPIRO,1991,pág.75).

En 1953, los científicos que participaron, de alguna manera u otra , en este descubrimiento, no podían suponer que conocer la estructura del ADN, sería una de las claves para acceder a su manipulación.Sería mucho después (cuando empezaron los primeros experimentos de ingeniería genética) cuando el público en general se diera cuenta de la importancia que tenía este hallazgo, ya que suponía la clave de la intervención artificial en la creación de la vida humana.

Estructura de los Nucleótidos


El ADN está compuesto de acido nucleícos. Cuando se realiza la hidrólisis completa de los ácidos nucleicos, se obtienen tres tipos de componentes principales

· Azúcar, en concreto una pentosa.

· Bases nitrogenadas: púricas y pirimidínicas.

· Ácido fosfórico.

El azúcar, en el caso de los ácidos desoxirribonucleicos (ADN) es la 2-desoxi-D-ribosa y en el caso de los ácidos ribonucleicos (ARN) es la D-ribosa.





Acido fosfórico



Las bases nitrogenadas que forman parte de los ácidos nucleicos son de dos tipos, púricas y pirimidínicas. Las bases púricas derivadas de la purina (fusión de un anillo pirimidínico y uno de imidazol) son la Adenina (6-aminopurina) y la Guanina (2-amino-6-hidroxipurina). Las bases pirimidínicas (derivadas de la pirimidina) son la Timina (2,6-dihidroxi-5-metilpirimidina o también llamada 5-metiluracilo), Citosina (2-hidroxi-6-aminopirimidina) y Uracilo (2,6-dihidroxipirimidina). Las bases nitrogenadas que forman normalmente parte del ADN son: Adenina (A), Guanina (G), Citosina y Timina (T). Las bases nitrogenadas que forman parte de el ARN son: Adenina (A), Guanina (G), Citosina (C) y Uracilo (U). Por tanto, la Timina es específica del ADN y el Uracilo es específico del ARN.







Además de las bases nitrogenadas anteriormente descritas, se han encontrado otras bases nitrogenadas en algunos virus o formando parte de algunos tipos especiales de ARNs. Ejemplos de algunas de estas bases púricas poco corrientes son: Hipoxantina, Xantina, 2-metiladenina, 6-metil-aminopurina. Entre las bases pirimidínicas podríamos citar la 5-metilcitosina (propia del ADN) y la 5-hidroximetil citosina (HMC) que sustituye a la citosina en los fagos T-pares.

En los ARN transferentes (ARN-t) que intervienen en el proceso de traducción de proteínas se encuentran la Ribotimidina, Dihidrouridina, Seudouridina e Inosina (I).

La unión de la base nitrogenada a la pentosa recibe el nombre de nucleósido y se realiza a través del carbono 1’ de la pentosa y los nitrógenos de las posiciones 3 (pirimidinas) o 9 (purinas) de las bases nitrogenadas mediante un enlace de tipo N-glucosídico. La unión del nucleósido con el ácido fosfórico se realiza a través de un enlace de tipo éster entre el grupo OH del carbono 5’ de la pentosa y el ácido fosfórico, originando un nucleótido. Los nucleótidos son las unidades o monómeros utilizados para construir largas cadenas de polinucleótidos.

Nucleósido = Pentosa + Base nitrogenada.

Nucleótido = Pentosa + Base nitrogenada + Ácido fosfórico.

Polinucleóotido = Nucleótido + Nucleótido + Nucleótido + ....





Tanto los nucleótidos como los nucleósidos pueden contener como azúcar la D-ribosa (ribonucleótidos y ribonucleósidos) o la pentosa 2-desoxi-D-ribosa (desoxirribonucleótidos y desoxirribonucleósidos).

Además, los nucleótidos pueden tener 1, 2 ó 3 grupos fosfato unidos al carbono 5’ de la pentosa, existiendo por tanto, nucleótidos 5’ monofosfato, nucleótidos 5’ difosfato y nucleótidos 5’ trifosfato. En algunos casos el ácido fosfórico se une a la pentosa por el carbono 3’, existiendo nucleótidos 3’ monofosfato, difosfato o trifosfato según el número de grupos fosfato que posea.

La terminología empleada para referirse a los nucleósidos y nucleótidos es la siguiente:

BaseNitrogenada Nucleósido Nucleótido
Adenina Adenosina Ácido Adenílico
Guanina Guanidina Ácido Guanílico
Citosina Citidina Ácido Citidílico
Timina Timidina Ácido Timidílico
Uracilo Uridina Ácido Uridílico

Los nucleótidos se unen entre si para formar largas cadenas de polinuclóetidos, esta unión entre monómeros nucleótidos se realiza mediante enlaces fosfodiéster entre los carbonos de las posiciones 3’ de un nucleótido con la 5’ del siguiente.


viernes, 13 de marzo de 2009

Uso de Bacteriófagos

INTRODUCCIÓN


Definición – Los bacteriófagos (fagos) son parásitos intracelulares obligados que se multiplican al interior de las bacterias, haciendo uso de algunas o todas sus maquinarias biosintéticas (p. ej., los virus que infectan bacterias).

Existen muchas similaridades entre los bacteriófagos y los virus de células animales. Así, los bacteriófagos pueden ser visualizados como sistemas modelo de los virus de células animales. Además es necesario el conocimiento previo del ciclo de vida del bacteriófago para entender uno de los mecanismos por los cuales los genes bacterianos pueden transferirse de una bacteria a otra.

Alguna vez se pensó que el uso de los bacteriófagos podría ser una vía efectiva para tratar las infecciones bacterianas, pero pronto se hizo aparente que los fagos son removidos rápidamente del cuerpo así que resultaron de poco valor clínico. Sin embargo, los bacteriófagos son útiles en el diagnóstico de laboratorio para la identificación de bacterias patógenas (fago-tipificación). Aunque la fago-tipificación no se usa en el laboratorio clínico de rutina, sí se usa a en los laboratorios de referencia con propósitos epidemiológicos. Recientemente, se ha desarrollado un nuevo interés en el posible uso de los bacteriófagos para el tratamiento de infecciones bacterianas y en la profilaxis. De manera que la decisión de si los bacteriófagos serán usados en la medicina clínica o no, aún está por ser determinada.



COMPOSICIÓN Y ESTRUCTURA DEL BACTERIÓFAGO

A. Composición – Aunque diferentes bacteriófagos pueden contener diferentes materiales todos ellos contienen ácido nucleico y proteína.

Dependiendo del fago, el ácido nucléico puede ser ya DNA o ya RNA pero no ambos y puede existir en varias formas. Los ácidos nucléicos de los fagos a menudo contienen bases raras o modificadas. Estas bases modificadas protegen a los ácidos nucleicos del fago de las endonucleasas que cortan los ácidos nucléicos del huésped durante la infección. El tamaño de los ácidos nucleicos varía dependiendo del fago. Los fagos más simples solo tienen suficiente ácido nucleico para codificar un promedio de 3-5 productos génicos, mientras que los fagos mas complejos, pueden codificar para mas de 100 productos génicos.

El número de proteínas de diferentes clases y la cantidad de cada una de ellas en la partícula del fago variará dependiendo de la clase de fago que se trate. El fago mas simple posee varias copias de solo una o dos diferentes proteínas, mientras que los mas complejos podrían poseer muchos tipos de proteínas diferentes. La función de las proteínas durante la infección es proteger al ácido nucleico de las nucleasas de su medio ambiente.

B. Estructura – Los bacteriófagos vienen en muchas diferentes formas y tamaños. Las características básicas estructurales de los bacteriófagos se ilustran en la Figura 1, la cual muestra al fago denominado T4.

1. Tamaño - T4 está entre los fagos mas grandes, tiene aproximadamente 200 nm de largo y 80-100 nm de ancho. Otros fagos son mas pequeños. La mayoría de los fagos están entre un rango de 24-200 nm de longitud.

2. Cabeza o Cápside – Los fagos clásicos poseen una estructura a manera de cabeza y pueden variar de tamaño y forma. Algunos son icosaédricos (20 caras) otros son filamentosos. La cabeza o cápside está compuesta de muchas copias de una o más proteínas diferentes. Al interior de la cabeza se encuentra el ácido nucleico. La cabeza actúa como una cubierta protectora para el ácido nucleico.

3. Cola – Muchos, aunque no todos los fagos muestran una cola unida a la cabeza del fago. La cola es un tubo hueco a través del cual el ácido nucleico pasa durante la infección. El tamaño de la cola puede variar y algunos fagos ni siquiera la tienen. En los fagos más complejos como T4, la cola se rodea de una cortina contráctil durante la infección de la bacteria. Al extremo de la cola los fagos más complejos como T4 presentan una placa en la base y una o mas fibras unidas a ella. Esta placa de base y las fibras de la cola están involucradas en la unión de los fagos a la célula bacteriana. No todos los fagos tienen placas de base ni fibras de la cola, En tales casos existen otras estructuras que se ven asociadas en la unión de partícula del fago a la bacteria.



INFECCIÓN DE LAS CÉLULAS HUÉSPED

A. Adsorción – El primer paso en el proceso de infección es la adsorción del fago a la célula bacteriana- Este paso es reversible está mediado por las fibras de la cola o por alguna estructura análoga en aquellos fagos que carecen de las mismas. Las fibras de la cola se unen a receptores específicos en la célula bacteriana y la especificiad del huésped del fago (p. ej., la bacteria que es capaz de infectar) se determina usualmente por el tipo de fibras de la cola que un fago posee. La naturaleza del receptor bacteriano varía en las diferentes bacterias. Los ejemplos incluyen proteínas sobre la superficie externa de la bacteria, LPS, pili y lipoproteínas. Estos receptores están en la bacteria para otros propósitos y los fagos han evolucionado de manera que son capaces de usar estos receptores para llevar a cabo la infección.

B. Unión irreversible – La unión del fago con la bacteria vía las fibras de la cola es de naturaleza débil y es reversible. La unión irreversible del fago con la bacteria está mediada por uno o mas componentes de la placa de la base. Los fagos que carecen placas de la base tienen otras formas de unirse estrechamente a la célula bacteriana.
D. Inyección del Ácido Nucleico – Cuando el fago ha logrado atravesar la envoltura bacteriana el ácido nucleico que se encuentra en la cabeza pasa a través de la cola hueca y penetra la célula bacteriana. Usualmente el único componente del fago que realmente penetra la célula es el ácido nucleico. Los remanentes del fado permanecen en el exterior de la bacteria. Hay algunas excepciones para esta regla. Esto es diferente de los virus animales, en los cuales la mayoría de las partículas virales normalmente se introducen en la célula. Esta diferencia se debe probablemente a la incapacidad de la bacteria para envolver a la bacteria a fin de endocitar materiales.

Recombinación Bacteriana

RECOMBINACIÓN GENÉTICA
Como ya hemos dicho, la recombinación genética es un proceso que lleva a la obtención de un nuevo genotipo a través del intercambio de material genético entre secuencias homólogas de DNA de dos orígenes diferentes. Las secuencias homólogas de DNA tienen la misma secuencia o casi la misma; por consiguiente, puede ocurrir apareamiento de bases en una longitud extensa de las dos moléculas de DNA. Los cromosomas homólogos tienen los mismos genes ubicados en el mismo sitio. Sin embargo, los genes, aunque similares, pueden no ser necesariamente idénticos como ocurre cuando existe una mutación en un gen.

Para que aparezcan nuevos genotipos como consecuencia de la recombinación, es esencial que las dos secuencias homólogas sean genéticamente diferentes. Tal es el caso en una célula eucariótica diploide, que tiene dos juegos de cromosomas, uno procedente de cada padre. El punto donde los cromosomas se cruzan se denomina kiasma y el proceso de intercambio se llama entrecruzamiento.
En las células procariotas sólo existe un único cromosoma. Por lo tanto, antes de que pueda ocurrir la recombinación, un cromosoma homólogo (normalmente una parte de este) debe primero ser transferido desde una bacteria donadora a una bacteria receptora. Debido a que el cromosoma del donador debe ser homólogo con el receptor, las bacterias donadoras y receptoras generalmente pertenecen a la misma especie o a especies muy relacionadas.
La recombinación homóloga ocurre después de la transferencia es decir, cuando el fragmento de DNA del donador está en la célula receptora. Si no se produce recombinación, el fragmento de DNA del donador se perderá, debido a que no puede replicarse independientemente.

RECOMBINACION GENETICA EN BACTERIAS
La recombinación genética en bacterias tiene lugar cuando se transfieren fragmentos de DNA homólogo desde una célula donadora a una célula receptora por uno de estos tres procesos:
1.- Transformación: supone que el DNA donador se encuentra libre en el medio
2.- Transducción: donde la transferencia del DNA donador está mediada por un virus.
3.- Conjugación: donde la transferencia implica un contacto célula-célula y la presencia de un plásmido conjugativo en la célula donadora.

Experimento de Griffith y Avery


El experimento de Griffith, llevado a cabo en 1928 por Frederick Griffith, fue uno de los primeros experimentos que mostró que las bacterias eran capaces de transferir información genética mediante un proceso llamado transformación.

En 1928, el microbiólogo Fred Griffith, que investigaba varias cepas de neumococo (Streptococcus pneumoniae), inyectó ratones con la cepa S y la cepa R de la bacteria. La cepa S era dañina, mientras que la rugosa (R), no lo era ya que la cepa S se cubre a si misma con una cápsula de polisacárido que la protege del sistema inmune del ser que ha sido infectado, resultando en la muerte de este, mientras que la cepa R no contiene esa cápsula protectora es derrotada por el sistema inmunológico. Cuando, inactiva por calor, la cepa S era inyectada, no había secuelas y el ratón vivía. Sorprendentemente, al combinar cepa R (no letal), con cepa S inactivada por calor (no letal), el ratón murió. Además, Griffith encontró células de cepa S vivas. En apariencia la cepa R se convirtió en cepa S. Este hallazgo no se pudo explicar, hasta que en 1944 Avery, Mc Leod, y Mc Carty, cultivaron cepa S y produjeron extracto de lisado de células (extracto libre de células).
Luego que los lípidos, proteínas y polisacaridos se removieron, el estreptococo aún conservó su capacidad de replicar su ADN e introducirlo en neumococo R.
La inactivación por calor de Griffith habría dejado intacto el ADN de los cromosomas de las bacterias, que era el causante de la formación del gen S, y podía ser liberado por las células destruidas e implantarse en cultivos sucesivos de cepa R.


¿En qué consistió su experimento?
El 20 de julio de 1890 Frederick Griffith, investigando una enfermedad infecciosa mortal,la neumonía, estudió las diferencias entre una cepa de la bacteria Streptococcus peumoniae que producía la enfermedad y otra que no la causaba. La cepa que causaba la enfermedad estaba rodeada de una cápsula (también se la conoce como cepa S, del inglés smooth, o sea lisa, que es el aspecto de la colonia en las placas de Petri). La otra cepa (la R, de rugosa, que es el aspecto de la colonia en la placa de Petri) no tiene cápsula y no causa neumonía. Griffith inyectó las diferentes cepas de la bacteria en ratones. La cepa S mataba a los ratones mientras que la cepa R no lo hacía. Luego comprobó que la cepa S, muerta por calentamiento, no causaba neumonía cuando se la inyectaba. Sin embargo cuando combinaba la cepa S muerta por calentamiento, con la cepa R viva, es decir con componentes individuales que no mata a los ratones e inyectaba la mezcla a los ratones, los ratones contraían la neumonía y morían; en la sangre de estos ratones muertos Griffith encontró neumococos vivos de la cepa S. Es decir que en las bacterias S muertas había “algo” capaz de transformar a las bacterias R, antes inocuas, en patógenas y este cambio era permanente y heredable. Este "algo" fue aislado; luego se encontró que era ADN. Las bacterias que se aislaban de los ratones muertos poseían cápsula y, cuando se las inyectaba, mataban otros ratones. Frederick Griffith fue capaz de inducir la transformación de una cepa no patogénica Streptococcus pneumoniae en patogénica. Griffith postuló la existencia de un factor de transformación como responsable de este fenómeno .

El problema que quería investigar con su experimento: Frederick Griffith estaba interesado en la virulencia (capacidad de infectar y producir enfermedad) de las bacterias causantes de la neumonía, llamadas Pneumonococcus. Este experimento marca el inicio de la investigación hacia el descubrimiento del ADN como material genético.



Conclusiones
El principio de transformación observado por Griffith era el ADN de la bacteria de cepa S (virulenta). Si bien la bacteria había muerto, su ADN sobrevivió al proceso de alta temperatura y fue tomado por la bacteria R (inofensiva). EL ADN de la cepa S contiene los genes que forman la cápsula de protección de polisacárido. Equipado con este gen, la cepa de bacteria R estaba ahora provista de protección frente al sistema inmune del animal y por lo tanto podía matar al animal. La naturaleza exacta del principio de transformación de ADN fue verificada en los experimentos realizados por Avery, McLeod y McCarty, y por Hershey y Chase.